Send a Tweet
Most Popular Choices
Share on Facebook 43 Share on Twitter Printer Friendly Page More Sharing
Exclusive to OpEd News:
Sci Tech    H4'ed 2/9/16

Do Physicists Love Their Paradoxes Too Much?

By       (Page 1 of 5 pages)   7 comments
Message Jim Arnold
Become a Fan
  (27 fans)

Paradox in physics can be defined as an incompatibility between an interpretation of a physical phenomenon and its everyday experience. Ever since Einstein recognized that light has properties commonly associated with both waves and particles (the nature of waves and particles had previously been perceived and thought mutually exclusive), paradox has been increasingly accepted and even expected in theoretical physics. Einstein felt that the light paradox would someday, somehow be resolved, but with the advent of quantum theory, the strange and seemingly unnatural behavior of subatomic particles made acceptance of paradox a scientific norm.

It is in consequence no longer possible to dismiss a physical hypothesis because it seems unnatural or incompatible with accepted theory. And such tolerance is not necessarily a good development. Gravitation theory is an excellent example: Gravity is treated as both a geometric warping of spacetime in the presence of mass and as a force, with little or no concern for the incompatibility of the two models; thus the tolerance of paradox has been extended to a tolerance of discrepancies between theories. Another example: "Dark energy" and "dark matter", although unobserved and perhaps unobservable, are favored explanations for cosmological phenomena, despite a long-established scientific principle that ranks questioning theoretical models above accepting seemingly unnatural entities.

The so-called "twin paradox" suffers from the same sort of theoretical malaise. It arose from an implication of relativity theory, that acceleration will produce discrepancies between clocks -- not relative differences as with uniform motion, but real differences that could result in a twin going to and from a distant star system and returning home significantly younger than the stay-at-home twin. This is not really a "paradox" if clock-speed is accepted as an attribute of each body's state in spacetime, rather than a universal constant, and it has been confirmed by experiment. But there has been an enduring problem with explaining how arbitrary periods of time spent by the traveling twin in uniform motion would be resolved upon the twins' reunion: When in uniform motion, each twin will regard the other's clock to be moving with an identical relative discrepancy, but upon their reunion they will have to agree that those observations were only relative, and the buildup of the mutual effect must somehow vanish.

Not only has the conundrum (not a paradox) involved with the twins' experience of a disappearing mutual discrepancy been tolerated, a proposed resolution has evoked almost no curiosity, and has even provoked outright dismissal. Only The European Journal of Science (EJS), an intrepid but relatively remote publication, has shown an interest in and appreciation for a resolution of the twin "paradox" (conundrum), and has published it in their January 2016 issue.

So do physicists love their paradoxes, discrepancies, and conundrums too much?

The article follows, and can also be found here:

EJS Vol 12 No 3 (2016)

The "Twin Paradox" Resolved

James R Arnold

swprod|AT|sonic.netEmail address


The so-called "Twin Paradox", in which a relativistic effect is hypothesized to produce verifiably different clock rates between bodies, has not been resolved to the satisfaction of many theorists, and it is disbelieved entirely by others. Experiments have confirmed the relativistic effect of acceleration, but there has been an abiding difficulty with clarifying how arbitrary periods of uniform motion between accelerations, when each twin will observe the other's clock to move more slowly, can be resolved at their reunion. Spacetime diagrams are used to demonstrate visually and conceptually that there is a non-paradoxical explanation for the effect of periods of uniform motion that has not been previously proposed.

Next Page  1  |  2  |  3  |  4  |  5

(Note: You can view every article as one long page if you sign up as an Advocate Member, or higher).

Interesting 3   Well Said 2   Valuable 2  
Rate It | View Ratings

Jim Arnold Social Media Pages: Facebook page url on login Profile not filled in       Twitter page url on login Profile not filled in       Linkedin page url on login Profile not filled in       Instagram page url on login Profile not filled in

A former visitant of UC Santa Cruz, former union boilermaker, ex-Marine, Vietnam vet, anti-war activist, dilettante in science with an earth-shaking theory on the nature of light (which no one will consider), philosopher in the tradition of (more...)

Go To Commenting
The views expressed herein are the sole responsibility of the author and do not necessarily reflect those of this website or its editors.
Writers Guidelines

Contact AuthorContact Author Contact EditorContact Editor Author PageView Authors' Articles
Support OpEdNews

OpEdNews depends upon can't survive without your help.

If you value this article and the work of OpEdNews, please either Donate or Purchase a premium membership.

If you've enjoyed this, sign up for our daily or weekly newsletter to get lots of great progressive content.
Daily Weekly     OpEd News Newsletter
   (Opens new browser window)

Most Popular Articles by this Author:     (View All Most Popular Articles by this Author)

Thom Hartmann's book on the JFK Assassination

Spartan Women: History's greatest conspiracy?

Is theoretical physics dead-ending?

Immigration Policy: the Liberal/Progressive Dichotomy

Steven Hawking is wrong on Extraterrestrials

Gravitation, force and energy

To View Comments or Join the Conversation:

Tell A Friend