On the one hand, science seems to depend on reproducibility, at least in the statistical sense. If different experimenters at different times and places get different results from the same experiment, how can we ever hope to come to agreement about the world we live in? Reproducibility--in the expanded, statistical sense--seems to be a necessary feature of the world if we are to be able to study the world with science.
On the other hand, we may treat reproducibility as an empirical question. Is it true that the same experiment always results in the same results, at least statistically? To rephrase more provocatively: Is it true that the universe is governed by scientific laws that always hold true, or are there exceptions and one-off happenings, things that occur sometimes but without a regularity we can codify?
We might ask, "are miracles real?" Should the scientific world-view take a firm stance on this issue and answer, "No!"? Or should science be open-minded, and consider the possibility that those who report miracles are not always deluded or mistaken?
Evidence that we need a new model
From one stage of our being to the next
We pass unconscious o'er a slender bridge,
The momentary work of unseen hands,
Which crumbles down behind us; looking back,
We see the other shore, the gulf between,
And, marvelling how we won to where we stand,
Content ourselves to call the builder Chance.
-- James Russell Lowell
There is no shortage of credible reports that cannot be explained by the reductionist paradigm of science, but most have been shunted out of the mainstream journals, attacked or simply ignored.
Perhaps you have had a dream or premonition similar to Uri's. If not, you probably know someone who has. It has become common for scientists to dismiss "anecdotal evidence" without feeling a need to explain it. This comes from a ubiquitous assumption that all experiments are replicable -- exactly the assumption which I think we need to challenge.
Daryl Bem is an emeritus professor in the Cornell Psychology Dept, recently retired after a long and distinguished career doing mainstream research about stimulus and response. In one of his last publications, he broke into a well-regarded psychological journal with an article that documented responses in human subjects that preceded the stimulus. This is precognition. The subject's subconscious knew or sensed what image was about to appear before him on a computer screen. Julia Mossbridge summarized a substantial body of research, which collectively corroborates the reality of precognition with 99.999999999% certainty.
Robert Jahn, retired dean of the engineering school at Princeton University stumbled (through his student's term project) upon evidence for the ability of human intention to affect probabilities that ought to be "quantum random". Jahn had the curiosity to investigate further. When the anomaly wouldn't go away, he refined the experiment and collected data over 30 years, by which time his results had achieved 5-sigma statistical significance -- on a par with evidence for the Higgs Boson. Jahn was ostracized and ridiculed, and colleagues began to discredit his work in aerospace engineering based on his willingness to openly consider the possibility that the human mind might be able to affect quantum processes outside the organism.
Dean Radin has conducted a broad array of experiments that demonstrate different aspects of telepathy, precognition and telekinesis. He has a background in physics, and routinely takes extraordinary measures to guarantee the isolation of his experiments from extraneous physical influences. In one recent project, he found that focused attention of a person who is not in physical contact with the equipment can shift interference fringes of laser light passing through two slits. This connection between thought and quantum is akin to results reported by Jahn.
Outside the world of parapsychology, there are uncontroversial animal behaviors that defy explanation. Fish, turtles and cetaceans routinely navigate thousands of miles through the ocean, their guidance system unknown to science. Each fall, a generation of Monarch butterflies is able to retrace the 2,000-mile migration path flown by their great, great, great grandparents six months earlier. Flatworms have been conditioned to respond to light, then they are ground up and fed to other flatworms, who acquire some of the conditioning through cannibalism [skeptic's account].
Dozens of labs around the world have successfully replicated the cold fusion experiments of Pons and Fleischmann. Reports of their work are sequestered in this on-line journal because mainstream physics journals have declared that cold fusion is impossible. In fact, there is nothing in fundamental physics that precludes cold fusion; it is, after all, a highly exothermic reaction, and the energy release is exactly as predicted. But cold fusion implies a new bulk quantum effect (akin to superconductivity, superfluidity and lasers) for which there is yet no theory. [video summary] The physicist who taught me quantum mechanics at Harvard was a Nobel laureate who became irate when the American Physical Society refused to publish his proto-theory of cold fusion.
Ian Stevenson and Jim Tucker are medical doctors who have each spent decades investigating cases "suggestive of reincarnation". Children recall past lives, with details about the circumstances of that life that are later corroborated. Stevenson noted the frequent presence of birthmarks where former selves suffered trauma at death. Helen Wambach and Carol Bowman have used hypnosis to help adults find access to information about past lives.
The ganzfeld protocol is the most reliable experimental procedure for demonstrating telepathy. A meta-analysis of 59 ganzfeld studies reports a combined success rate of 30% in identifying a target photograph when the chance hit rate should be 1 in 4. The improbability of this result has been calculated in different ways, with results from 10-12 to 10-8.
Through a glass darkly: Where post-reductionist science is headed
All the progress in science since the Enlightenment has built on a reductionist paradigm: breaking down the whole into parts, explaining the parts in terms of influences that are nearby in time and space. If this is not the whole story, then we might imagine there are relationships among distant events. There might be large-scale patterns that cannot be explained as "emergent" from local laws. There may relationships that appear to us as retrocausality. There might be destiny.
(Note: You can view every article as one long page if you sign up as an Advocate Member, or higher).