Add this Page to Facebook!   Submit to Twitter   Submit to Reddit   Submit to Stumble Upon   Pin It!   Fark It!   Tell A Friend  
Printer Friendly Page Save As Favorite Save As Favorite View Article Stats
No comments

OpEdNews Op Eds

The Need for People-Friendly Research & Development

By (about the author)     Permalink       (Page 1 of 2 pages)
Related Topic(s): ; ; ; , Add Tags Add to My Group(s)

View Ratings | Rate It

Headlined to None 5/4/09

opednews.com

Obviously there is a need for more basic research and development (R&D) in almost every aspect of our lives. So why are we getting less? Symbolic of this decline is the death by a thousand cuts being suffered by Bell Laboratories, once the leading research facility in the private sector [1]. While many corporations have R&D labs, not surprisingly, the objective of virtually all privately funded R&D is to produce products profitable in the near term [2]. Some benefits to people other than owners and top-level corporation managers do often occur, but only as side effects. There are NSF (National Science Foundation) grants and other funding for truly basic research, but this supports only a small fraction of scientific and engineering work. How serious is this problem, and what can be done about it?

What is Not Happening?

In areas where few if any large corporations are involved, the likelihood of R&D being funded privately is small. For example, the last American company producing railroad passenger cars recently went out of business [3]. That might explain why so little privately funded R&D is done here on railroad car design and manufacture (not to mention railroads in general). At the other end of the technological complexity scale, how much serious R&D is being done to optimize bicycles, a mode of transportation with great advantages both for the environment and for public health? This is a topic of little interest to corporations with pockets deep enough to fund such work. (Perhaps more important is that 95 % of bicycles sold in the US are made in Asia &mdash the exceptions made in the US are mostly hand-made [4]).

There is significant R&D in the area of alternative energy sources (tho not, in my opinion, nearly enough), because this can plausibly lead to substantial profit for big companies. But new ideas for reducing energy waste or increasing the efficiency of various systems and devices are less closely linked to profit margins of large corporations. So we don't see a lot of basic work on novel heat insulation methods, or to increase the efficiency of small motors, or hot water heaters. Such ideas as heat pumps or zoned heating systems for homes have the potential for large reductions in energy consumption, but have not been refined to the extent required for widespread use. Most people don't think much about energy usage in connection with their computers (apart from the drain on batteries), so there probably wouldn't be a lot of profit in developing a printer, for example, that used a fraction of the energy used in current models.

In the area of agriculture, most research is done to benefit production on large factory farms, rather than to find better ways for small farmers (or home gardeners) to operate, or to develop products that better serve the health of consumers.

The general subject of public health and safety hazards is grossly neglected. During the past half century, tens of thousands of new chemicals have been introduced into the human environment, appearing in consumer products, in the workplace, in the air we breath, the food we eat, and in our water supply. Most have not been tested at all for toxicity, and very few of them have been subjected to more than superficial testing [5]. Almost nothing has been done to explore the effects of long term exposure, or synergetic effects of simultaneous exposure to a multiplicity of chemicals . There is an urgent need to develop effective methods for carrying out such tests, and there is work being done on this problem &mdash but not nearly enough. Here again, nobody is likely to get rich by investing in such research.

Similarly, possible hazards associated with electromagnetic radiation in various parts of the spectrum are not being investigated objectively. In fact, if it turned out that the use of cell phones, for example, was dangerous [6], there might be serious financial consequences for many companies. So work that might produce such knowledge is actively discouraged. [7]

Consider medical R&D, clearly important to the well-being of all of us. To a large extent, it is controlled by large pharmaceutical companies. But these companies have little interest in finding cures for diseases. They seek products that can ameliorate symptoms of chronic ailments, preferably medications that need to be taken daily for life. (All the better if they are addictive.) [8]

Real scientific research on nutrition, with large-scale controlled experimental studies, other than work funded by companies pushing particular products, is minimal, considering its great potential for bettering the health of so many people. Apart from an all-too small number of people working to discover what is best to eat, dissemination of what is known on the subject is also minimal, apart from commercial promotion of profitable products. [9]

It is widely accepted that we need to drink, on average, roughly two quarts of water daily. But there seems to be little scientific evidence to justify this belief [10]. The authors of the cited paper examined the literature and found many interesting bits of evidence showing the effect of water intake on various important medical conditions. At one point they comment, "Only large and expensive randomized trials could settle these questions definitively. Given that water cannot be patented, such trials seem unlikely." The concluding sentences in the paper are,

In fact, there is simply a lack of evidence in general. Given the central role of water not only in our bodies but also in our profession, it seems a deficit worthy of repletion

Let's zero in more closely on another neglected topic.

Google Gargle

Gargling is a traditional practice, believed by many to reduce the occurrence of upper respiratory infections. Is this just a quirky myth, or is it really effective? How hard could it be to check this out experimentally? Surely there exist a lot of studies. Think so? Well, try googling gargle (fun to say and fun to do!). I had 848,000 hits, down to 92,200 for "gargle trial". I found one pointer to what amounted to an ad for a commercial gargling product claiming that a study showed this product to be very effective, but there was no reference to any description of the alleged work. I found no references to American research, but there are several references to work in Japan (where gargling is a common practice) that appear to be serious scientific studies carried out fairly recently by university scientists.

Positive results were obtained, but the studies were small-scale, the principal one [11] involved 387 subjects in a controlled experiment. It is obvious that a lot more experimental work is needed to verify the results. There are numerous variables that should be explored. One is the issue of plain water versus solutions of various substances such as salt, iodine, or tea, to mention a few in common use. Is the temperature of the solution important? What are the effects of gargling frequency? What ailments are affected (e.g., one small Japanese study indicated that gargling significantly reduces influenza incidence among the elderly). If it is effective, as suggested by the Japanese work, what exactly is the underlying mechanism?

Preliminary results suggest that this simple, low-cost, and almost certainly safe procedure has a lot of potential for significantly reducing the incidence of very widespread ailments affecting all of us. We won't know for sure until more extensive, carefully designed studies are made. Unfortunately, gargling is not something likely to lead to big payoffs for any large corporation. Don't expect the Hackensack Water Company, or Morton Salt to fund research on gargling. In general, the money-driven US research establishment is not interested in conducting serious studies on such topics.

Another Shortage: Unbiased Scientists

Almost all scientists and engineers work either for private companies or for universities largely funded by corporation money. As a result, getting unbiased evaluations on most complex technological issues is extremely difficult. Even when not explicitly pressured by their employers, people are generally reluctant to render judgments that might be perceived to be against the interests of those controlling their incomes. An added biasing factor is a natural tendency to defend the organization one is affiliated with.

Thus, when the FDA (Food and Drug Administration) sets up a committee of experts to advise it about, say the efficacy of some potential new medication, where test results submitted by the manufacturer are questionable, all, or most, of the committee members usually have financial connections that may bias their views [12]. Often these connections are not revealed, but even if they are, the work of the committee must be considered seriously tainted. Apart from the fact that FDA officials setting such committees may themselves be biased by past or prospective industry connections, it is often difficult to find people with the required expertise who do not have financial ties that might influence their views. This is a consequence of the fact that the income of even university researchers is likely to come, at least in part, directly or indirectly, from industry sources [13].

There are companies that employ scientists to cast doubt on arguments and tests revealing defects in the products of their clients. Using techniques pioneered by tobacco corporations to obscure the hazards of tobacco, they are often hired by pharmaceutical companies to delay the removal of hazardous or ineffective products from the market place [14].

What Should We Do?

Nobody should be shocked to learn that corporations design their R&D budgets to enhance their profits. That is what they are supposed to do. It should also not surprise people that, while some of the means used to enhance corporate profits also benefit the general public, this is by no means always the case. Some profit-producing operations, on balance, are neutral with respect to the public good, and some may be harmful. There are also, as illustrated above, areas where R&D potentially beneficial to many people is not deemed by corporate managers to be likely to result in enough profit to warrant the necessary investment.

It makes sense, therefore, to consider basic R&D as a public function, to be carried out in government laboratories. The mission of such laboratories would be to explore science and technology deemed to be of potential value to the people of the country. This is by no means a novel idea, and, of course, such national laboratories have existed for many decades. The National Institute of Standards and Technology (NIST, formerly called the Bureau of Standards) has been an important factor in promoting technology in the US since its inception in 1901. Many federal agencies including the DoD, NASA, the FDA, the EPA, and the NIH have R&D facilities.

Next Page  1  |  2

 

http://www1.cs.columbia.edu/~unger/myBlog/endsandmeansblog.h

I am an engineer. My degrees are in electrical engineering and my work has been in the digital systems area, mainly digital logic, but also computer organization, software and theory. I am a Professor, Emeritus, Computer Science and Electrical (more...)
 
Add this Page to Facebook!   Submit to Twitter   Submit to Reddit   Submit to Stumble Upon   Pin It!   Fark It!   Tell A Friend
The views expressed in this article are the sole responsibility of the author and do not necessarily reflect those of this website or its editors.

Writers Guidelines

Contact Author Contact Editor View Authors' Articles

Most Popular Articles by this Author:     (View All Most Popular Articles by this Author)

Why Abortion is NOT Murder

Our Descent Toward Third World Status

2012 Presidential Election: Silent Liberals

The War On Terror: An Exercise in Hypocrisy

Privacy, and open government: both under assault

We Can Do Better than Instant Runoff Voting

Comments

The time limit for entering new comments on this article has expired.

This limit can be removed. Our paid membership program is designed to give you many benefits, such as removing this time limit. To learn more, please click here.

Comments: Expand   Shrink   Hide  
No comments