Add this Page to Facebook!   Submit to Twitter   Submit to Reddit   Submit to Stumble Upon   Pin It!   Fark It!   Tell A Friend  
Printer Friendly Page Save As Favorite Save As Favorite View Article Stats
1 comment

OpEdNews Op Eds

Fracking: Water Issues--Colorado-centric, but applicable to all

By (about the author)     Permalink       (Page 1 of 2 pages)
Related Topic(s): ; ; ; ; ; ; ; , Add Tags Add to My Group(s)

Must Read 2   Well Said 1   News 1  
View Ratings | Rate It

Headlined to H2 3/16/13
Become a Fan
  (22 fans)

opednews.com


We be fracked by jdial

To indicate bargain status of something (or perhaps more commonly to prime the pump toward future purchases), people used to say, "It's free as water."  I haven't heard anyone use that comparative for a long time, at least not here in the bone-dry West.  We've got the bottled water to render that aphorism extinct. 

Reagan Waskom[1], a water engineer currently residing at Colorado State University, provided lecture attendees a wealth of insider information. 

Water

Colorado gets its water primarily from its high-country snowpack.  Most of it--almost two-thirds of the annual flow--melts like ice cream in the late spring and early summer while the months of December, January, and February produce only three percent of the year's runoff.  Once liquefied, Colorado river water rushes to exit the state.  And most of that water makes its escape.  Of the annual 15 million acre-feet of water that Colorado's mountains and streams are expected to produce on average--and that average varies wildly--10 million acre-feet or two-thirds of the expectation are appropriated elsewhere.  It goes to the other-basin states (Colorado, accompanied by New Mexico, Utah, and Wyoming, are upper-basin states while Arizona, Nevada, and California are lower-basin states) and has since 1922.  The other-basin states don't look kindly to Colorado taking more than its allocation.  When Wyoming challenged Colorado's right to divert headwaters of the Colorado River to Colorado's front range, the U.S. Supreme Court ruled that those waters would be governed by the Doctrine of Prior Appropriation--first come, first served.  Wyoming's claim was primary.  

Water rights in the US are overseen by the states and reflect differences in abundance.  In the East where water is plentiful whoever owns the river bank controls the water; this is the riparian system.  As population and development increased the regulated riparian system developed; users now needed permits.  The West developed the appropriation system that put miners ahead of riparian uses and  severed water from land ownership.  Groundwater is confusingly governed by a blend of these policies, and all disagreements are explored in courts devoted to water altercations. 

When the seven states of the upper and lower river basin signed  the  Colorado River Compact , they had calculated that Colorado's runoff supplied about 16 million acre-feet of water each year, of which the other-basin states would be allocated 10 MAF.  It turns out that the figure they used was optimistic, based on times of abnormally high snowpack.  Theoretically Colorado gets to keep five MAF of the water its snowpack releases each year.  In fact it keeps what remains after all prior appropriations are met.  Per the 1922 agreement , over any 10-year period upper-basin states must provide to lower-basin states an aggregate flow of 75 million acre-feet.  Although there is a little  wiggle room provided by a set of interim allocation guidelines that recognize low-reservoir conditions, amounts owed downstream don't much reflect reality.   And although long-term precipitation measures over the past century are not deemed to have changed, the Colorado River region has shown a steady upward trend in temperature since the late 1970s.   A 2007 report by the National Research Council found that the most recent 11-year temperature average exceeds any previous values in over 100 years of recordkeeping, and that the Colorado River basin has warmed more than any other region in the country.    

An acre-foot of water is the amount of water that would cover an acre--about the size of a football field--one foot deep.  That is around 326,000 gallons of water; an Olympic-sized pool contains about twice that.  One acre-foot of water is thought sufficient for the home, irrigation, and industrial needs of four to five city people in one year.  (Do rural folk use more or less?)  

Of the water that Colorado gets to keep, how is it allocated?   In this state, cities use 10% of the water and agriculture 90%, all portioned out by seniority.   

Fracking

The Rocky Mountains, once the bed of a vast cretaceous sea, are bounteously underlain with fossil fuels.  Thirty of the top 100 US gas fields as of 2009 touch Colorado. 

Oil shale was a boom in Colorado in the 80s.  It is not to be confused with shale oil.  Oil shale is rock with solid hydrocarbons trapped within it, while shale oil and gas are carbon-rich deposits that tend to have pockets of liquid oil and gas within them.  Conventional drilling taps gas pools in rock, while unconventional targets tiny pockets of gas in tight sands, tight rock, and shale.  The Niobrara shale in eastern Colorado has been mapped for a long time, but it became accessible only with the advent of unconventional fracking.  And access is feverish.   There are 50,000 oil and gas wells in Colorado now, twenty thousand of those in Weld County north of Denver.  

Frack fluid is 90% water and 9.5% sand proppant, which holds open the pressure-created cracks in the shale.  About 0.5% of the fluid typically consists of acids for cleaning perforations and initiating rock fissures, surfactant to minimize friction, salt to delay the breakdown of the gel polymer, ethylene glycol to prevent scale formation, borate salts to maintain viscosity, isopropanol to increase viscosity, sodium and potassium carbonates to maintain crosslinkers, glutaraldehyde to disinfect, citric acid to prevent corrosion, and gelling agents.   Proppant can be gel, foam, or slickwater based.   Slickwater is water made slick through chemistry.   

Just the Fracts

Water used in conventional drilling had a limited role, that of carrying cut rock to the surface and keeping the bits cool and lubed.  A conventional vertical well required about 150,000 gallons of water.  Unconventional drilling requires much more water, Waskom said, and it must also be fairly pure so that it doesn't alter the chemicals.  The initial, vertical portion of fracking requires at least as much water as for conventional drilling and up to one million gallons of it, since it goes deeper than the wells of yesteryear.  Then the shaft turns horizontal.  

Each horizontal well segment, often resembling spokes in form and number, requires between two to five million gallons of water, depending on the lateral-portion length.  In each 'spoke' the casing is perforated and fluid is forced out into the shale.  It takes a lot of it, and it takes this amount every time a lateral length is fracked to keep the hydrocarbon flowing. 

The industry will tell you that, comparatively, fracking uses little water.  And the industry is right, or at least it was eight years ago.  According to the 2005 USGS water-use report, oil and gas operations, subsumed under Mining operations, used about one percent of all water used in this country.   Of course, since that year the use of horizontal high-volume fracking has gone into high gear.   Between 2008 and 2011, oil and gas leases in six Colorado counties more than doubled.   

As previously USGS water-use reports came out every five years--1995, 2000, 2005--it is perplexing that eight years after the 2005 report the USGS does not appear to have updated its statistics.  Note that 2005 was only a few years after the technique for drilling horizontal wells had been successfully accomplished and fracking wells were few.  

On a potentially related note, last year the U.S. Environmental Protection Agency announced it was eliminating air-quality impacts from its environmental study of fracking due out in 2014. 

After the Fract

After the water has been driven into the ground for a fracking well, much of it returns.  Actually, more than what was introduced returns.  Does this mean that fracking actually produces water?  Not really. 

Next Page  1  |  2

 

Dr. Dial is a psychologist and medical illustrator who for well over a decade has worked as a freelance medical and science writer and editor. She is an editor for OpEdNews, having contributed a number of articles to it about hydraulic fracturing, (more...)
 
Add this Page to Facebook!   Submit to Twitter   Submit to Reddit   Submit to Stumble Upon   Pin It!   Fark It!   Tell A Friend
The views expressed in this article are the sole responsibility of the author and do not necessarily reflect those of this website or its editors.

Follow Me on Twitter

Contact Author Contact Editor View Authors' Articles

Most Popular Articles by this Author:     (View All Most Popular Articles by this Author)

Seeds of destruction: It's NOT just about food

Who Turned Scientific American?

Who the Frack's Really in Charge?

Why Barack Obama Does Not Disappoint Some Folks

Fracking: Water Issues--Colorado-centric, but applicable to all

Everything You Always Wanted to Know About Fracking but Should Be Afraid to Ask

Comments

The time limit for entering new comments on this article has expired.

This limit can be removed. Our paid membership program is designed to give you many benefits, such as removing this time limit. To learn more, please click here.

Comments: Expand   Shrink   Hide  
1 people are discussing this page, with 1 comments
To view all comments:
Expand Comments
(Or you can set your preferences to show all comments, always)

Isn't it time that the fracking industry retires t... by j dial on Saturday, Mar 16, 2013 at 6:08:47 PM