111 online
 
Most Popular Choices
Share on Facebook 29 Printer Friendly Page More Sharing
OpEdNews Op Eds    H2'ed 1/16/11

The Search for BP's Oil

By       (Page 2 of 3 pages) Become a premium member to see this article and all articles as one long page.   No comments
Message Naomi Klein
Become a Fan
  (55 fans)

We may never know what other organisms were trapped in a similarly lethal cloud, and that points to a broader problem: now that we are beyond the oil-covered-birds phase, establishing definitive links between the spill and whatever biogenetic or ecological disturbances are in store is only going to get harder. For instance, we know the coral died because of all the bodies: ghostly coral corpses litter the ocean floor near the wellhead, and Fisher is running tests to see if he can find a definitive chemical link to BP's oil. But that sort of forensics simply won't be possible for the much smaller life forms that are even more vulnerable to BP's toxic cocktail. When larval tuna or squid die, even in huge numbers, they leave virtually no trace. Hollander uses the phrase "cryptic mortality" to describe these phantom die-offs.

All this uncertainty will work in BP's favor if the worst-case scenarios eventually do materialize. Indeed, concerns about a future collapse may go some way toward explaining why BP (with the help of Kenneth Feinberg's Gulf Coast Claims Facility) has been in a mad rush to settle out of court with fishermen, offering much-needed cash now in exchange for giving up the right to sue later. If a significant species of fish like bluefin does crash three or even ten years from now (bluefin live for fifteen to twenty years), the people who took these deals will have no legal recourse. Even if a case did end up in court, beating BP would be tricky. As part of the damage assessment efforts, NOAA scientists are conducting studies that monitor the development of eggs and larvae exposed to contaminated water. But as Exxon's lawyers argued in the Valdez case, wild fish stocks are under a lot of pressure these days--without a direct chemical link to BP's oil, who's to say what dealt the fatal blow?

In a way, the lawyers will have a point, if a disingenuous one. As Ian MacDonald explains, it is precisely the multiple stresses on marine life that continue to make the spill so dangerous. "We don't appreciate the extent to which most populations are right on the edge of survival. It's very easy for populations to go extinct." He points to the sperm whales--there are only about 1,600 of them in the northern Gulf of Mexico, a small enough population that the unnatural death of just a few whales (which breed infrequently and later in life) can endanger the community's survival. Acoustic research has found that some sperm whales responded to the spill by leaving the area, a development that oceanographers find extremely worrying.

One of the things I am learning aboard the WeatherBird II, watching these scientists test for the effects of invisible oil on invisible organisms, is not to trust my eyes. For a few months last year, when BP's oil formed patterns on the surface of these waters that looked eerily like blood, industrial society's impact on the ocean was easy for all to see. But when the oil sank, it didn't disappear; it just joined so much else that the waves are hiding, so many other secrets we count on the ocean to keep. Like the 27,000 abandoned oil and gas wells in the Gulf of Mexico, and the network of unmonitored underwater pipelines that routinely corrode and leak. Like the sewage that cruise ships are entirely free to dump, under federal law, so long as they are more than three miles from shore. Like a dead zone the size of New Jersey. Scientists at Dalhousie University in Halifax predict that if we continue our rates of overfishing, every commercial fish stock in the world could crash by midcentury. And a study published in Nature in July found that global populations of phytoplankton have declined about 40 percent since 1950, linked with "increasing sea surface temperatures"; coral is bleaching and dying for the same reason. And on and on. The ocean's capacity to heal itself from our injuries is not limitless. Yet the primary lesson being extracted from the BP disaster seems to be that "mother nature" can take just about anything we throw at her.

As the WeatherBird II speeds off to the third research station, I find myself thinking about something New Orleans civil rights attorney Tracie Washington told me the last time I was on the Gulf Coast. "Stop calling me resilient," she said. "I'm not resilient. Because every time you say, 'Oh, they're resilient,' you can do something else to me." Washington was talking about the serial disasters that have battered New Orleans. But if the poisoned and perforated gulf could talk, I think it might say the same thing.

On day three of the cruise, things start to get interesting. We are now in the DeSoto Canyon, about thirty nautical miles from the wellhead. The ocean floor is 1,000 meters down, our deepest station yet. Another storm is rolling in, and as the team pulls up the multi-corer, waves swamp the deck. It's clear as soon as we see the mud that something is wrong. Rather than the usual gray with subtle gradations, the cylinders are gray and then, just below the top layer, abruptly turn chocolaty brown. The consistency of the top brown layer is sort of fluffy, what the scientists refer to as "flocculent."

A grad student splits one of the cores lengthwise and lays it out on deck. That's when we see it clearly: separating the gray and brown layers--and looking remarkably like chocolate parfait--is a thick line of black gunk. "That's not normal," Hollander declares. He grabs the mud samples and flags Charles Kovach, a senior scientist with the Florida Department of Environmental Protection. They head to the darkest place on the boat--one of the tiny sleeping quarters crammed with bunk beds. In the pitch darkness they hold an ultraviolet light over the sample, and within seconds we are looking at silvery particles twinkling up from the mud. This is a good indication of oil traces. Hollander saw something similar on the August cruise and was able not only to identify hydrocarbons but to trace them to BP's Macondo well.

Sure enough, after the sediment is put through a battery of chemical tests, Hollander has his results. "Without question, it's petroleum hydrocarbons." The thick black layers are, he says, "rich in hydrocarbons," with the remains of plants and bacteria mixed in. The fluffy brown top layer has less oil and more plant particles, but the oil is definitely there. It will be weeks or even months before Hollander can trace the oil to BP's well, but since he has found BP's oil at this location in the DeSoto Canyon before, that confirmation is likely. If we are fishing for oil, as Hollander had joked, this is definitely a big one.

It strikes me that there is a satisfying irony in the fact that Hollander's cruise found oil that BP would have preferred to stay buried, given that the company indirectly financed the expedition. BP has pledged to spend $500 million on research as part of its spill response and made an early payout of $30 million. But in contrast to the company's much publicized attempts to buy off scientists with lucrative consulting contracts, BP agreed to hand this first tranche over to independent institutions in the gulf, like the Florida Institute of Oceanography, which could allocate it through a peer-review process--no strings attached. Hollander was one of the lucky recipients. This is a model for research in the gulf: paid for by the oil giants that profit so much from its oil and gas, but with no way for them to influence outcomes.

At several more research stations near the wellhead, the WeatherBird II finds the ocean floor coated in similar muck. The closer the boat gets to the wellhead, the more black matter there is in the sediment. And Hollander is disturbed. The abnormal layer of sediment is up to five times thicker than it was when he collected samples here in August. The oil's presence on the ocean floor didn't diminish with time; it grew. And, he points out, "the layer is distributed very widely," radiating far out from the wellhead.

But what concerns him even more are the thick black lines. "That black horizon doesn't happen," he says. "It's consistent with a snuff-out." Healthy sea-floor mud is porous and well oxygenated, with little critters constantly burrowing holes from the surface sand to the deeper mud, in the same way that worms are constantly turning over and oxygenating soil in our gardens. But the dark black lines in the sediment seemed to be acting as a sealant, preventing that flow of life. "Something caused an environmental and community change," Hollander explains. It could have been the sheer volume of matter falling to the bottom, triggering a suffocation effect, or perhaps it was "a toxic response" to oil and dispersants.

Whatever it was, Hollander isn't the only one observing the change. While we are at sea, Samantha Joye, an oceanographer at the University of Georgia, is leading a team of scientists on a monthlong cruise. When she gets back she reports seeing a remarkably similar puddinglike layer of sediment. And in trips to the ocean floor in a submersible, she saw dead crustaceans in the sediment and tube worms that had been "decimated." Ian MacDonald was one of the scientists on the trip. "There were miles of dead worms," he told me. "There was a zone of acute impact of at least eighty square miles. I saw dead sea fans, injured sea fans, brittle stars entangled in its branches. A very large area was severely impacted." More warning signs of a bottom-up disaster.

* * *

A week after Hollander returned from the cruise, Unified Area Command came out with its good news report on the state of the spill. Of thousands of water samples taken since August, the report stated, less than 1 percent met EPA definitions of toxicity. It also claimed that the deepwater sediment is largely free from BP's oil, except within about two miles of the wellhead. That certainly came as news to Hollander, who at that time was running tests of oiled sediment collected thirty nautical miles from the wellhead, in an area largely overlooked by the government scientists. Also, the government scientists measured only absolute concentrations of oil and dispersants in the water and sediment before declaring them healthy. The kinds of tests John Paul conducted on the toxicity of that water to microorganisms are simply absent.

Coast Guard Rear Adm. Paul Zukunft, whose name is on the cover of the report, told me of the omission, "That really is a limitation under the Clean Water Act and my authorities as the federal on-scene coordinator." When it comes to oil, "it's my job to remove it"--not to assess its impact on the broader ecosystem. He pointed me to the NOAA-led National Resource Damage Assessment (NRDA) process, which is gathering much more sensitive scientific data to help it put a dollar amount on the overall impact of the spill and seek damages from BP and other responsible parties.

Unlike the individual and class-action lawsuits BP is rushing to settle, it will be years before a settlement is reached. That means more time to wait and see how fish stocks are affected by egg and larvae exposure. And according to Robert Haddad, who heads the NRDA process for NOAA, any settlement will have "reopener clauses" that allow the government to reopen the case should new impacts manifest themselves.

Next Page  1  |  2  |  3

(Note: You can view every article as one long page if you sign up as an Advocate Member, or higher).

Must Read 1  
Rate It | View Ratings

Naomi Klein Social Media Pages: Facebook page url on login Profile not filled in       Twitter page url on login Profile not filled in       Linkedin page url on login Profile not filled in       Instagram page url on login Profile not filled in

Naomi Klein is the author of The Shock Doctrine: The Rise of Disaster Capitalism, now out in paperback. To read all her latest writing visit www.naomiklein.org

Go To Commenting
The views expressed herein are the sole responsibility of the author and do not necessarily reflect those of this website or its editors.
Writers Guidelines

 
Contact AuthorContact Author Contact EditorContact Editor Author PageView Authors' Articles
Support OpEdNews

OpEdNews depends upon can't survive without your help.

If you value this article and the work of OpEdNews, please either Donate or Purchase a premium membership.

STAY IN THE KNOW
If you've enjoyed this, sign up for our daily or weekly newsletter to get lots of great progressive content.
Daily Weekly     OpEd News Newsletter
Name
Email
   (Opens new browser window)
 

Most Popular Articles by this Author:     (View All Most Popular Articles by this Author)

Our Lives Are Under Threat From Some of the Most Powerful and Richest Entities -- Here's How We Can Fight Back and Win

Gulf oil spill: A hole in the world

Occupy Wall Street: The Most Important Thing in the World Now

Hurricane Sandy: beware of America's disaster capitalists

HopeOver, HopeLash, HopeBreak: A Lexicon of Disappointment

Capitalism vs. the Climate

To View Comments or Join the Conversation:

Tell A Friend